Challenge Number 2: Sounds Pretty Radical, Pt. I

THE MATH JESTER

Fall 2021

Name: \qquad Date: \qquad

Directions

Complete as many of the following problems as you can. You may use a calculator or Unix terminal for help with calculations, but show your work! Partial credit will be awarded for good reasoning.

1. Consider $\sqrt{612}$. Your mission, should you choose to accept it, is to convert this expression into $\sqrt{M^{2} N}$, where M and N are integers. What is the largest value of M that satisfies this equation? What is the corresponding value of N ? [2 points]
Hint: if you do this correctly, N will be an example of a squarefree ${ }^{1}$ factor of 612. What does this mean? How can you apply it?
2. Now consider $\sqrt[3]{17000}$. Convert this expression into $\sqrt[3]{M^{3} N}$, where M and N are integers. What is the largest value of M that satisfies this equation? What is its corresponding value of N ? [4 points]
Hint: If you do this correctly, N is a cubefree ${ }^{2}$ factor of 17000 . What does this tell you?
3. Consider $\sqrt[5]{9143008}$. Convert this expression into $\sqrt[5]{M^{5} N}$, where M and N are integers. What is the largest value of M that satisfies this equation? What is its corresponding value of N ? [4 points]
4. Now consider $\sqrt[6]{1927458368}$. Then use the strategies or patterns presented above in order to show that this expression is equal to $\sqrt[3]{\sqrt[2]{1927458368}}$. Why do you think this is? Can you generalize this fact to a number other than 1927458368? [5 points]
5. Is this problem interesting? Why or why not? [3 points]
[^0]
[^0]: ${ }^{1}$ Weisstein, Eric W. "Squarefree." From MathWorld - A Wolfram Web Resource. https://mathworld.wolfram.com/Squarefree.html
 ${ }^{2}$-. "Cubefree." From MathWorld - A Wolfram Web Resource. https://mathworld.wolfram.com/Cubefree.html

